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Review: Conditional LMs
A conditional language model assigns probabilities to 
sequences of words,                                  , given some 
conditioning context,    .

w = (w1, w2, . . . , w`)

p(w | x) =
Ỳ

t=1

p(wt | x, w1, w2, . . . , wt�1)

As with unconditional models, it is again helpful to use  
the chain rule to decompose this probability:

What is the probability of the next word, given the history of  
previously generated words and conditioning context    ?

x

x



Sutskever et al. (2014)



明⼦子は ピムスが 好きです

Sutskever et al. (2014)
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“You can't cram the meaning of a whole %&!$# 
sentence into a single $&!#* vector!”

Prof. Ray Mooney
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We are compressing a lot of information in a finite-sized  
vector.

Gradients have a long way to travel. Even LSTMs forget!

Conditiong with vectors

What is to be done?



Outline of Lecture

• Machine translation with attention 

• Image caption generation with attention



Solving the Vector Problem 
in Translation

• Represent a source sentence as a matrix 

• Generate a target sentence from a matrix 

• This will 

• Solve the capacity problem 

• Solve the gradient flow problem



Sentences as Matrices
• Problem with the fixed-size vector model 

• Sentences are of different sizes but vectors are of 
the same size 

• Solution: use matrices instead 

• Fixed number of rows, but number of columns 
depends on the number of words 

• Usually |f| = #cols
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Sentences as Matrices

Ich möchte ein Bier

Mach’s gut Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtümer

Question: How do we build these matrices?



With Concatenation
• Each word type is represented by an n-dimensional 

vector 

• Take all of the vectors for the sentence and 
concatenate them into a matrix 

• Simplest possible model 

• So simple, no one has bothered to publish how 
well/badly it works!
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With Convolutional Nets
• Apply convolutional networks to transform the naive 

concatenated matrix to obtain a context-dependent matrix 

• Explored in a recent ICLR submission by Gehring et al., 
2016 (from FAIR) 

• Closely related to the neural translation model 
proposed by Kalchbrenner and Blunsom, 2013 

• Note: convnets usually have a “pooling” operation at the 
top level that results in a fixed-sized representation. For 
sentences, leave this out.
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Ich möchte ein Bier

x1 x2 x3 x4

⇤ ⇤

Ich möchte ein Bier

F 2 Rf(n)⇥g(|f |)

Filter 1 Filter 2



With Bidirectional RNNs
• By far the most widely used matrix representation, due to 

Bahdanau et al (2015)  

• One column per word 

• Each column (word) has two halves concatenated together: 

• a “forward representation”, i.e., a word and its left context 

• a “reverse representation”, i.e., a word and its right context 

• Implementation: bidirectional RNNs (GRUs or LSTMs) to read f 
from left to right and right to left, concatenate representations
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Where are we in 2017?
• There are lots of ways to construct F 

• Very little systematic work comparing them 

• There are many more undiscovered things out there 

• convolutions are particularly interesting and under-explored 

• syntactic information can help (Sennrich & Haddow, 2016; Nadejde 
et al., 2017), but many more integration strategies are possible 

• try something with phrase types instead of word types?

Multi-word expressions are a pain in the neck .



Generation from Matrices
• We have a matrix F representing the input, now we need to generate from it 

• Bahdanau et al. (2015) were the first to propose using attention for translating from matrix-
encoded sentences 

• High-level idea 

• Generate the output sentence word by word using an RNN 

• At each output position t, the RNN receives two inputs (in addition to any recurrent inputs) 

• a fixed-size vector embedding of the previously generated output symbol et-1 

• a fixed-size vector encoding a “view” of the input matrix 

• How do we get a fixed-size vector from a matrix that changes over time? 

• Bahdanau et al: do a weighted sum of the columns of F (i.e., words) based on how 
important they are at the current time step. (i.e., just a matrix-vector product Fat) 

• The weighting of the input columns at each time-step (at) is called attention
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Attention

• How do we know what to attend to at each time-
step? 

• That is, how do we compute     ?at



Computing Attention
• At each time step (one time step = one output word), we want to be able to 

“attend” to different words in the source sentence 

• We need a weight for every column: this is an |f|-length vector at  

• Here is a simplified version of Bahdanau et al.’s solution 

• Use an RNN to predict model output, call the hidden states 

• At time t compute the expected input embedding 

• Take the dot product with every column in the source matrix to compute 
the attention energy. 

• Exponentiate and normalize to 1: 

• Finally, the input source vector for time t is
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(called     in the paper)
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Nonlinear Attention-Energy 
Model

• In the actual model, Bahdanau et al. replace the dot 
product between the columns of F and rt with an MLP: 

• Here, W and v are learned parameters of appropriate 
dimension and + “broadcasts” over the |f| columns in WF 

• This can learn more complex interactions 

• It is unclear if the added complexity is necessary for 
good performance
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• In the actual model, Bahdanau et al. replace the dot 
product between the columns of F and rt with an MLP: 

• Here, W and v are learned parameters of appropriate 
dimension and + “broadcasts” over the |f| columns in WF 
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good performance

ut = F>rt (simple model)
(Bahdanau et al)ut = v> tanh(WF+ rt)



Putting it all together
e0 = hsi

while et 6= h/si :
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Attention in MT
Add attention to seq2seq translation: +11 BLEU



Model Variant
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Model Variant

• What are the relative advantages of early binding 
versus late binding?



Summary
• Attention is closely related to “pooling” operations in convnets 

(and other architectures) 

• Bahdanau’s attention model seems to only cares about 
“content” 

• No obvious bias in favor of diagonals, short jumps, fertility, 
etc. 

• Some work has begun to add other “structural” biases 
(Luong et al., 2015; Cohn et al., 2016), but there are lots more 
opportunities 

• Attention weights provide interpretation you can look at





A word about gradients
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Attention and Translation
• Cho’s question: does a translator read and memorize 

the input sentence/document and then generate the 
output? 

• Compressing the entire input sentence into a vector 
basically says “memorize the sentence” 

• Common sense experience says translators refer 
back and forth to the input. (also backed up by eye-
tracking studies) 

• Should humans be a model for machines?



Outline of Lecture

• Machine translation with attention 

• Image caption generation with attention



softmax

p̂1

h1

x1

<s>

⇠

Akiko

h2

softmax

x2

⇠
likes

x3

h3

softmax

⇠

Pimm’s

x4

h4

softmax

⇠

</s>

明⼦子は ピムスが 好きです

Sutskever et al. (2014)



softmax

p̂1

h1

x1

<s>

⇠

a

h2

softmax

x2

⇠
man

x3

h3

softmax

⇠

is

x4

h4

softmax

⇠

rowing

Vinyals et al. (2014) Show and Tell: A Neural Image Caption Generator



Image Caption Generation

• Can attention help caption modeling?

Xu et al. (2015, ICML)



Regions in ConvNets

Each point in a “higher” level of a convnet  
defines spatially localised feature vectors(/matrices).

Xu et al. calls these “annotation vectors”, ai, i 2 {1, . . . , L}
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Attention
• Attention “weights” (    ) are computed using 

exactly the same technique as discussed above 

• Deterministic soft attention (Bahdanau et al., 2014)  

• Stochastic hard attention (Xu et al., 2015)

ct = Fat
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(weighted average)

(sample a column)

• What are the benefits of this model? 

• What are the challenges of this model?
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Attention
• Attention “weights” (    ) are computed using 

exactly the same technique as discussed above 

• Deterministic soft attention (Bahdanau et al., 2014)  

• Stochastic hard attention (Xu et al., 2015)

ct = Fat

st ⇠ Categorical(at)

ct = F:,st (sample a column)
• What are the benefits of this model? 

• What are the challenges of learning the 
parameters of this model?

at

(weighted average)



Learning Hard Attention
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Learning Hard Attention
• Sample N sequences of attention decisions from the 

model 

• The gradient is the probability of the gradient of the 
probability of this sequence scaled by the log probability 
of generating the target words using that sequence of 
attention decisions 

• This is equivalent to using the REINFORCE algorithm 
(Williams, 1992) using the log probability of the observed 
words as a “reward function”. REINFORCE a policy 
gradient algorithm used for reinforcement learning.







Attention in Captioning
Add soft attention to image captioning: +2 BLEU

Add hard attention to image captioning: +4 BLEU



Summary
• Significant performance improvements 

• Better performance over vector-based encodings 

• Better performance with smaller training data sets 

• Model interpretability 

• Better gradient flow 

• Better capacity (especially obvious for translation)



Questions?


