
Conditional Language
Modeling 

with Attention

Chris Dyer

Review: Conditional LMs
A conditional language model assigns probabilities to
sequences of words, , given some
conditioning context, .

w = (w1, w2, . . . , w`)

p(w | x) =
Ỳ

t=1

p(wt | x, w1, w2, . . . , wt�1)

As with unconditional models, it is again helpful to use  
the chain rule to decompose this probability:

What is the probability of the next word, given the history of  
previously generated words and conditioning context ?

x

x

Sutskever et al. (2014)

明⼦子は ピムスが 好きです

Sutskever et al. (2014)

softmax

p̂1

h1

x1

<s>

⇠

Akiko

h2

softmax

x2

⇠
likes

x3

h3

softmax

⇠

Pimm’s

x4

h4

softmax

⇠

</s>

明⼦子は ピムスが 好きです

Sutskever et al. (2014)

softmax

p̂1

h1

x1

<s>

⇠

Akiko

h2

softmax

x2

⇠
likes

x3

h3

softmax

⇠

Pimm’s

x4

h4

softmax

⇠

</s>

明⼦子は ピムスが 好きです

Sutskever et al. (2014)

Conditiong with vectors

We are compressing a lot of information in a finite-sized  
vector.

Conditiong with vectors

We are compressing a lot of information in a finite-sized  
vector.

“You can't cram the meaning of a whole %&!$# 
sentence into a single $&!#* vector!”

Prof. Ray Mooney

We are compressing a lot of information in a finite-sized  
vector.

Gradients have a long way to travel. Even LSTMs forget!

Conditiong with vectors

We are compressing a lot of information in a finite-sized  
vector.

Gradients have a long way to travel. Even LSTMs forget!

Conditiong with vectors

What is to be done?

Outline of Lecture

• Machine translation with attention

• Image caption generation with attention

Solving the Vector Problem
in Translation

• Represent a source sentence as a matrix

• Generate a target sentence from a matrix

• This will

• Solve the capacity problem

• Solve the gradient flow problem

Sentences as Matrices
• Problem with the fixed-size vector model

• Sentences are of different sizes but vectors are of
the same size

• Solution: use matrices instead

• Fixed number of rows, but number of columns
depends on the number of words

• Usually |f| = #cols

Sentences as Matrices

Ich möchte ein Bier

Sentences as Matrices

Ich möchte ein Bier

Mach’s gut

Sentences as Matrices

Ich möchte ein Bier

Mach’s gut Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtümer

Sentences as Matrices

Ich möchte ein Bier

Mach’s gut Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtümer

Question: How do we build these matrices?

With Concatenation
• Each word type is represented by an n-dimensional

vector

• Take all of the vectors for the sentence and
concatenate them into a matrix

• Simplest possible model

• So simple, no one has bothered to publish how
well/badly it works!

Ich möchte ein Bier

x1 x2 x3 x4

fi = xi

Ich möchte ein Bier

x1 x2 x3 x4

Ich möchte ein Bier

fi = xi

F 2 Rn⇥|f |

Ich möchte ein Bier

x1 x2 x3 x4

With Convolutional Nets
• Apply convolutional networks to transform the naive

concatenated matrix to obtain a context-dependent matrix

• Explored in a recent ICLR submission by Gehring et al.,
2016 (from FAIR)

• Closely related to the neural translation model
proposed by Kalchbrenner and Blunsom, 2013

• Note: convnets usually have a “pooling” operation at the
top level that results in a fixed-sized representation. For
sentences, leave this out.

Ich möchte ein Bier

x1 x2 x3 x4

Ich möchte ein Bier

x1 x2 x3 x4

Ich möchte ein Bier

x1 x2 x3 x4

⇤

Filter 1

Ich möchte ein Bier

x1 x2 x3 x4

⇤ ⇤

Filter 1 Filter 2

Ich möchte ein Bier

x1 x2 x3 x4

⇤ ⇤

Ich möchte ein Bier

F 2 Rf(n)⇥g(|f |)

Filter 1 Filter 2

With Bidirectional RNNs
• By far the most widely used matrix representation, due to

Bahdanau et al (2015)

• One column per word

• Each column (word) has two halves concatenated together:

• a “forward representation”, i.e., a word and its left context

• a “reverse representation”, i.e., a word and its right context

• Implementation: bidirectional RNNs (GRUs or LSTMs) to read f
from left to right and right to left, concatenate representations

Ich möchte ein Bier

x1 x2 x3 x4

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

Ich möchte ein Bier

F 2 R2n⇥|f |

fi = [
 �
h i;
�!
h i]

Where are we in 2017?
• There are lots of ways to construct F

• Very little systematic work comparing them

• There are many more undiscovered things out there

• convolutions are particularly interesting and under-explored

• syntactic information can help (Sennrich & Haddow, 2016; Nadejde
et al., 2017), but many more integration strategies are possible

• try something with phrase types instead of word types?

Multi-word expressions are a pain in the neck .

Generation from Matrices
• We have a matrix F representing the input, now we need to generate from it

• Bahdanau et al. (2015) were the first to propose using attention for translating from matrix-
encoded sentences

• High-level idea

• Generate the output sentence word by word using an RNN

• At each output position t, the RNN receives two inputs (in addition to any recurrent inputs)

• a fixed-size vector embedding of the previously generated output symbol et-1

• a fixed-size vector encoding a “view” of the input matrix

• How do we get a fixed-size vector from a matrix that changes over time?

• Bahdanau et al: do a weighted sum of the columns of F (i.e., words) based on how
important they are at the current time step. (i.e., just a matrix-vector product Fat)

• The weighting of the input columns at each time-step (at) is called attention

Recall RNNs…

 →

Recall RNNs…

 →

Recall RNNs…

I'd

 →

Recall RNNs…

I'd

 → I'd

Recall RNNs…

I'd

 →

like

I'd

Recall RNNs…

 →

 →

Ich möchte ein Bier

 →

Ich möchte ein Bier

 →

Ich möchte ein Bier

Attention history:
a>1

a>2

a>3

a>4

a>5

 →

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

c1 = Fa1

 →

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

c1 = Fa1

I'd

 →

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

c1 = Fa1

I'd

 →

Ich möchte ein Bier

Attention history:
a>1

a>2

a>3

a>4

a>5

I'd

I'd

 →

Ich möchte ein Bier

Attention history:
a>1

a>2

a>3

a>4

a>5

I'd

I'd

I'd →

Ich möchte ein Bier

Attention history:
a>1

a>2

a>3

a>4

a>5

I'd

I'd →

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

c2 = Fa2

I'd

I'd →

like

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

c2 = Fa2

I'd

I'd →

like

like

a

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

like

a

a

beer

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

like

a

a

beer

beer

stopSTOP

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

Attention

• How do we know what to attend to at each time-
step?

• That is, how do we compute ?at

Computing Attention
• At each time step (one time step = one output word), we want to be able to

“attend” to different words in the source sentence

• We need a weight for every column: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the expected input embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing Attention
• At each time step (one time step = one output word), we want to be able to

“attend” to different words in the source sentence

• We need a weight for every column: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the expected input embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing Attention
• At each time step (one time step = one output word), we want to be able to

“attend” to different words in the source sentence

• We need a weight for every column: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the expected input embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing Attention
• At each time step (one time step = one output word), we want to be able to

“attend” to different words in the source sentence

• We need a weight for every column: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the expected input embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing Attention
• At each time step (one time step = one output word), we want to be able to

“attend” to different words in the source sentence

• We need a weight for every column: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the expected input embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Nonlinear Attention-Energy
Model

• In the actual model, Bahdanau et al. replace the dot
product between the columns of F and rt with an MLP:

• Here, W and v are learned parameters of appropriate
dimension and + “broadcasts” over the |f| columns in WF

• This can learn more complex interactions

• It is unclear if the added complexity is necessary for
good performance

ut = F>rt

ut = tanh (WF+ rt)v

(simple model)
(Bahdanau et al)

Nonlinear Attention-Energy
Model

• In the actual model, Bahdanau et al. replace the dot
product between the columns of F and rt with an MLP:

• Here, W and v are learned parameters of appropriate
dimension and + “broadcasts” over the |f| columns in WF

• This can learn more complex interactions

• It is unclear if the added complexity is necessary for
good performance

ut = F>rt (simple model)
(Bahdanau et al)ut = v> tanh(WF+ rt)

Nonlinear Attention-Energy
Model

• In the actual model, Bahdanau et al. replace the dot
product between the columns of F and rt with an MLP:

• Here, W and v are learned parameters of appropriate
dimension and + “broadcasts” over the |f| columns in WF

• This can learn more complex interactions

• It is unclear if the added complexity is necessary for
good performance

ut = F>rt (simple model)
(Bahdanau et al)ut = v> tanh(WF+ rt)

Putting it all together
e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f) (Part 1 of lecture)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)

ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention; part 2 of lecture)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

ut = v> tanh(WF+ rt)

Putting it all together
e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f) (Part 1 of lecture)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)

ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention; part 2 of lecture)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

doesn’t depend on output decisions
ut = v> tanh(WF+ rt)

Putting it all together
e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f) (Part 1 of lecture)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)

ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention; part 2 of lecture)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

X = WF

X
ut = v> tanh(WF+ rt)

Putting it all together
e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f) (Part 1 of lecture)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)

ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention; part 2 of lecture)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

X = WF

ut = v> tanh(X+ rt)

Attention in MT
Add attention to seq2seq translation: +11 BLEU

Model Variant

I'd

I'd →

like

like

a

a

beer

beer

stopSTOP

I'd

I'd →

like

like

a

a

beer

beer

stopSTOP

“Early binding”

“Late binding”

Model Variant

• What are the relative advantages of early binding
versus late binding?

Summary
• Attention is closely related to “pooling” operations in convnets

(and other architectures)

• Bahdanau’s attention model seems to only cares about
“content”

• No obvious bias in favor of diagonals, short jumps, fertility,
etc.

• Some work has begun to add other “structural” biases
(Luong et al., 2015; Cohn et al., 2016), but there are lots more
opportunities

• Attention weights provide interpretation you can look at

A word about gradients

I'd

I'd →

like

like

a

a

beer

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

like

a

a

beer

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

like

a

a

beer

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

Attention and Translation
• Cho’s question: does a translator read and memorize

the input sentence/document and then generate the
output?

• Compressing the entire input sentence into a vector
basically says “memorize the sentence”

• Common sense experience says translators refer
back and forth to the input. (also backed up by eye-
tracking studies)

• Should humans be a model for machines?

Outline of Lecture

• Machine translation with attention

• Image caption generation with attention

softmax

p̂1

h1

x1

<s>

⇠

Akiko

h2

softmax

x2

⇠
likes

x3

h3

softmax

⇠

Pimm’s

x4

h4

softmax

⇠

</s>

明⼦子は ピムスが 好きです

Sutskever et al. (2014)

softmax

p̂1

h1

x1

<s>

⇠

a

h2

softmax

x2

⇠
man

x3

h3

softmax

⇠

is

x4

h4

softmax

⇠

rowing

Vinyals et al. (2014) Show and Tell: A Neural Image Caption Generator

Image Caption Generation

• Can attention help caption modeling?

Xu et al. (2015, ICML)

Regions in ConvNets

Each point in a “higher” level of a convnet  
defines spatially localised feature vectors(/matrices).

Xu et al. calls these “annotation vectors”, ai, i 2 {1, . . . , L}

a1

a1

h i
F =

a2

a1

h i
a2F =

a3

a1

h i
a2 a3 · · ·F =

Attention
• Attention “weights” () are computed using

exactly the same technique as discussed above

• Deterministic soft attention (Bahdanau et al., 2014)  

• Stochastic hard attention (Xu et al., 2015)

ct = Fat

st ⇠ Categorical(at)

ct = F:,st

(weighted average)

(sample a column)

• What are the benefits of this model?

• What are the challenges of this model?

at

Attention
• Attention “weights” () are computed using

exactly the same technique as discussed above

• Deterministic soft attention (Bahdanau et al., 2014)  

• Stochastic hard attention (Xu et al., 2015)

ct = Fat

st ⇠ Categorical(at)

ct = F:,st

(weighted average)

(sample a column)

• What are the benefits of this model?

• What are the challenges of this model?

at

Attention
• Attention “weights” () are computed using

exactly the same technique as discussed above

• Deterministic soft attention (Bahdanau et al., 2014)  

• Stochastic hard attention (Xu et al., 2015)

ct = Fat

st ⇠ Categorical(at)

ct = F:,st (sample a column)
• What are the benefits of this model?

• What are the challenges of learning the
parameters of this model?

at

(weighted average)

Learning Hard Attention

(Jensen’s inequality)

L = � log p(w | x)

= � log

X

s

p(w, s | x)

= � log

X

s

p(s | x)p(w | x, s)

 �
X

s

p(s | x) log p(w | x, s)

MC⇡ � 1

N

NX

i=1

p(s(i) | x) log p(w | x, s)

Learning Hard Attention

(Jensen’s inequality)

L = � log p(w | x)

= � log

X

s

p(w, s | x)

= � log

X

s

p(s | x)p(w | x, s)

 �
X

s

p(s | x) log p(w | x, s)

MC⇡ � 1

N

NX

i=1

p(s(i) | x) log p(w | x, s)

Learning Hard Attention

(Jensen’s inequality)

L = � log p(w | x)

= � log

X

s

p(w, s | x)

= � log

X

s

p(s | x)p(w | x, s)

 �
X

s

p(s | x) log p(w | x, s)

MC⇡ � 1

N

NX

i=1

p(s(i) | x) log p(w | x, s)

Learning Hard Attention
• Sample N sequences of attention decisions from the

model

• The gradient is the probability of the gradient of the
probability of this sequence scaled by the log probability
of generating the target words using that sequence of
attention decisions

• This is equivalent to using the REINFORCE algorithm
(Williams, 1992) using the log probability of the observed
words as a “reward function”. REINFORCE a policy
gradient algorithm used for reinforcement learning.

Attention in Captioning
Add soft attention to image captioning: +2 BLEU

Add hard attention to image captioning: +4 BLEU

Summary
• Significant performance improvements

• Better performance over vector-based encodings

• Better performance with smaller training data sets

• Model interpretability

• Better gradient flow

• Better capacity (especially obvious for translation)

Questions?

