Conditional Language
Modeling
with Attention

Chris Dyer

Carnegie

b DeepMind Mellon

University

Review: Conditional LMs

A conditional language model assigns probabilities to
sequences of words, w = (w1, ws, ..., we), given some
conditioning context, @.

As with unconditional models, it is again helpful to use

the chain rule to decompose this probabillity:
¢

p(’UJ ‘ ’CB) — Hp(wt | L, Wy1,W2, ... 7wt—1)
t=1
What is the probability of the next word, given the history of
previously generated words and conditioning context x?

Sutskever et al. (2014)

BT

Sutskever et al. (2014)

kiko

p1 | |

softmax

A+ (&

likes

softmax

imm’ </s>
| | | |
softmax softmax
->I h3 I_ ->I h4

Sutskever et al. (2014)

o ' — -
| |
kiko likes imm’ </s>
¢ ¢ ¢ ¢
p1 | I I | | | | |
softmax softmax softmax softmax
? g h g h; g h,

Sutskever et al. (2014)

Conditiong with vectors

We are compressing a lot of information in a finite-sized
vector.

Conditiong with vectors

We are compressing a lot of information in a finite-sized
vector.

“You can't cram the meaning of a whole %&!$#
sentence into a single $&!#* vector!”

Prof. Ray Mooney

Conditiong with vectors

We are compressing a lot of information in a finite-sized
vector.

Gradients have a long way to travel. Even LSTMs forget!

Conditiong with vectors

We are compressing a lot of information in a finite-sized
vector.

Gradients have a long way to travel. Even LSTMs forget!

What is to be done?

Outline of Lecture

e Machine translation with attention

Solving the Vector Problem
N Translation

Represent a source sentence as a matrix

Generate a target sentence from a matrix

This will
* Solve the capacity problem

* Solve the gradient flow problem

Sentences as Matrices

* Problem with the fixed-size vector model

e Sentences are of different sizes but vectors are of
the same size

e Solution: use matrices instead

 Fixed number of rows, but number of columns
depends on the number of words

* Usually |fi = #cols

Sentences as Matrices

Ich mochte ein Bier

Sentences as Matrices

Mach’s qut

Ich mochte ein Bier

Sentences as Matrices

Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtimer

Mach’s qut

Ich mochte ein Bier

Sentences as Matrices

o

Ich mochte ein Bier Mach

S g’U,t Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtimer

Question: How do we build these matrices?

With Concatenation

* Each word type Is represented by an n-dimensional
vector

e Take all of the vectors for the sentence and
concatenate them into a matrix

* Simplest possible model

* S0 simple, no one has bothered to publish how
well/badly it works!

(XX}
& & @]
(XX j

ch mochte ein

'
S

EXx]

Bie

ch mochte ein

Bie

r

F ¢ R*XIf
eSS
e e e
X3 X3 e e e
‘ Ich mochte ein Bier
&
L
ch mochte ein Bier

With Convolutional Nets

* Apply convolutional networks to transtorm the naive
concatenated matrix to obtain a context-dependent matrix

o Explored in arecent ICLR submission by Gehring et al.,
2016 (from FAIR)

o Closely related to the neural translation model
proposed by Kalchbrenner and Blunsom, 2013

 Note: convnets usually have a "pooling” operation at the
top level that results in a fixed-sized representation. For
sentences, leave this out.

ch mochte ein

e
S

Bie

ch mochte ein Bier

r n
S8 9 10 @ @] =

Filter 2

. -
S8 9 10 @ @] =

ch mochte ein

Bier

lter 2

F e RS xa(f)
S &
e e

Ich mochte ein Bier

With Bidirectional RNNs

e By far the most widely used matrix representation, due to
Bahdanau et al (2015)

* One column per word
 Each column (word) has two halves concatenated together:
* a “forward representation”, i.e., a word and its left context

* a ‘reverse representation”, i.e., a word and its right context

* Implementation: bidirectional RNNs (GRUs or LSTMs) to read f
from left to right and right to left, concatenate representations

000
& & @]
EXx]

ch mobchte ein

P4
S

Bie

5
\@oﬂgd?ooﬁw
000-(000]

|

000000

|

\&ocgﬂ?ot,

eln

hte

MOC

ch

N

o)

mochte

D)

el

|
@ e el

UJ
D

4_0 & &
1= T

XX

000 °

XX

B

10 © @}
= o

eln

hte

XX

MOC

ch

(s v

,

eseses

\

,.

AL

‘

)

10 @ @

7 L
X X e LY X IR

eln

hte

900000

MOC

ch

1% % &
%

f; = [}lz, hz]

F c R27xI|f|

Ich mochte ein Bier

Where are we In 20177

* There are lots of ways to construct F
* Very little systematic work comparing them
* There are many more undiscovered things out there
* convolutions are particularly interesting and under-explored

e syntactic information can help (Sennrich & Haddow, 2016; Nadejde
et al., 2017), but many more integration strategies are possible

 try something with phrase types instead of word types?

Multi-word expressions are a pain in the neck .

(Generation from Matrices

* We have a matrix F representing the input, now we need to generate from it

 Bahdanau et al. (2015) were the first to propose using attention for translating from matrix-
encoded sentences

* High-level idea
* Generate the output sentence word by word using an RNN
* At each output position t, the RNN receives two inputs (in addition to any recurrent inputs)
* a fixed-size vector embedding of the previously generated output symbol e, ,
 a fixed-size vector encoding a “view” of the input matrix

 How do we get a fixed-size vector from a matrix that changes over time?

* Bahdanau et al: do a weighted sum of the columns of F (i.e., words) based on how
important they are at the current time step. (i.e., just a matrix-vector product Fa,)

* The weighting of the input columns at each time-step (a,) is called attention

Recall RNNs...

Recall RNNs...

Recall RNNs...

I'd

Recall RNNs...

o o
J /
4)
t t

v J

o J

> >

—)

I'd

Recall RNNs...

I'd like

o o
J J
))
t t

> >

o v

> >

—)

I'd

Recall RNNs...

000

Ich mochte ein Bier

PP OD®®
L 4
L 4
. 1000000
4
\\ L 4

4 4

- -
- D
-
o=~ - . \“.“.
e " ~rcnna==" - s’
DN Y . - -
llllllllllll - “.“.
~ - -
l' "llllll“ -
" “

Ich mochte ein Bier

l kkk\I

| Attention history:
Jee]

Ich mochte ein Bier

00¢
@

1

C1 = Fa1

| Attention history:
Jee]

Ich mochte ein Bier

B A A

00¢
@

1

C1 = Fa1

| Attention history:
Jee]

Ich mochte ein Bier

I'd

B A A

00¢
@

1

C1 = Fa1

| Attention history:
Jee]

Ich mochte ein Bier

I'd

1

Attention history:
J@e]

Ich mochte ein Bier

Attention history

e

-‘
~ ‘-
" “

- am e mm=m =

-
-
lllllllll

"
~
i
el
llllll

1

Ich mochte ein Bier

I'd

[T @ | Attention history:
2D a; |@ ©

o000 :.loe

2D

BB

BHBB

BB

Ich mochte ein Bier

I'd

B A A

00¢
@

1

)

[T @ | Attention history:
2D a; |@ ©

o000 :.loe

2D

BB

BHBB

BB

Ich mochte ein Bier

I'd like

)

[T @ | Attention history:
2D a; |@ ©

o000 :.loe

2D

BB

BHBB

BB

Ich mochte ein Bier

I'd like a

\

[® | Attention history:
2D a |@ ©

o000 :loe

e00e .| .o

BB

BHBB

BB

Ich mochte ein Bier

I'd

like

Q

beer

e

Ich mochte ein Bier

Attention history:

22 7] Attention history:

e00e®| -fee
0000 00
0000 . ®
o000 . ®
0009 .i5000
DB ——

Ich mochte ein Bier

Attention

e How do we know what to attend to at each time-
step”?

* Thatis, how do we compute a;”

Computing Attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every column: this is an |f-length vector a;
 Here is a simplified version of Bahdanau et al.’s solution

e Use an RNN to predict model output, call the hidden states sy
(st has a fixed dimensionality, call it m)

Computing Attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every column: this is an |f-length vector a;
 Here is a simplified version of Bahdanau et al.’s solution
e Use an RNN to predict model output, call the hidden states sy
(st has a fixed dimensionality, call it m)

« Attime tcompute the expected input embedding r; = Vs;_1
(V is a learned parameter)

Computing Attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every column: this is an |f-length vector a;
* Here is a simplified version of Bahdanau et al.’s solution

e Use an RNN to predict model output, call the hidden states sy
(st has a fixed dimensionality, call it m)

« Attime tcompute the expected input embedding r; = Vs;_1
(V is a learned parameter)
o Take the dot product with every column in the source matrix to compute
the attention energy. u; = FTrt (called e; in the paper)
(Since F has |fi columns, u;has |fj rows)

Computing Attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every column: this is an |f-length vector a;
* Here is a simplified version of Bahdanau et al.’s solution

e Use an RNN to predict model output, call the hidden states sy
(st has a fixed dimensionality, call it m)
« Attime tcompute the expected input embedding r; = Vs;_1
(V is a learned parameter)
o Take the dot product with every column in the source matrix to compute
the attention energy. u; = FTrt (called e; in the paper)
(Since F has |fi columns, u;has |fj rows)

- Exponentiate and normalize to 1: a; = softmax(u;)
(called oy in the paper)

Computing Attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every column: this is an |f-length vector a;

* Here is a simplified version of Bahdanau et al.’s solution

Use an RNN to predict model output, call the hidden states sy
(st has a fixed dimensionality, call it m)

At time t compute the expected input embedding r; — Vs;_1

(V is a learned parameter)
Take the dot product with every column in the source matrix to compute
the attention energy. u; = FTrt (called e; in the paper)

(Since F has |fi columns, u;has |fj rows)
Exponentiate and normalize to 1: a; = softmax(uy)
(called oy in the paper)

Finally, the input source vector for time tis ¢; = Fay

Nonlinear Attention-cnergy
Model

* |n the actual model, Bahdanau et al. replace the dot
product between the columns of F and r; with an MLP:

w, =F'r, (simple model)

Nonlinear Attention-cnergy
Model

* |n the actual model, Bahdanau et al. replace the dot
product between the columns of F and r; with an MLP:

I
ar—"x1 Tt

u; =v' tanh(WF

r;)

(stimple-modeh

(Bahdanau et al)

Nonlinear Attention-cnergy
Model

* |n the actual model, Bahdanau et al. replace the dot
product between the columns of F and r; with an MLP:

=T "r; (simple-modeh

u; =v' tanh(WF +r;) (Bahdanau et al)

 Here, W and v are learned parameters of appropriate
dimension and + “broadcasts” over the |fi columns in WF

e [his can learn more complex interactions

e |tis unclear if the added complexity is necessary for
good performance

Putting It all together

F = EncodeAsMatrix(f) (Part 1 of lecture)
€o = (s)

so = w (Learned initial state; Bahdanau uses Uil)
t =20
while e; # (/s) :
t=t+1
r = Vs;_1
u; =v ' tanh(WF + 1)
a; = softmax(uy)
c; — Fay
s; = RNN(s;_1, |e:_1;¢¢])
y: = softmax(Ps; + b)

(Compute attention; part 2 of lecture)

(e;_; Is a learned embedding of ¢;)

(P and b are learned parameters)
e; | e« ~ Categorical(yy)

Putting It all together

F = EncodeAsMatrix(f) (Part 1 of lecture)

€ — <S>

so = w (Learned initial state; Bahdanau uses Url)

t=20

while e; # (/s) :
t=1t+1
r: = Vs;_q

(»does { depend on output decisions

u=v' tanh@ (Compute attention; part 2 of lecture)
a; = softmax(uy)
Fat

= RNN(s;_1,|e;—15¢¢]) (e;_; is a learned embedding of e;)

y: = softmax(Ps; + b) (P and b are learned parameters)
e; | e« ~ Categorical(yy)

Putting It all together

F = EncodeAsMatrix(f) (Part 1 of lecture)
eo = ()
so = w (Learned initial state; Bahdanau uses Uil)

t =(
WD
while e; #£ (/s) :

t=1t+4+1
I't:VSt_l

W =v' tanh(lg*%Jr r) (Compute attention; part 2 of lecture)
a; = softmax(uy)

c; — Fay

s; = RNN(s;—1, [e:—15¢¢]) (e, is a learned embedding of e;)
y: = softmax(Ps; + b) (P and b are learned parameters)

e; | e« ~ Categorical(yy)

Putting It all together

F = EncodeAsMatrix(f) (Part 1 of lecture)

eo = (s)

so = w (Learned initial state; Bahdanau uses Uil)
t=20

X =WF
while e; #£ (/s) :
t=1t+1

r: = Vs;_q

u; = v ' tanh(X + ry) (Compute attention; part 2 of lecture)
a; = softmax(uy)

c; — Fay

s; = RNN(s;—1, [e:—15¢¢]) (e, is a learned embedding of e;)

y: = softmax(Ps; + b) (P and b are learned parameters)
e; | e« ~ Categorical(yy)

Attention in M1

Add attention to seg2seq translation: +11 BLEU

Model Variant

"Early binding”

“Late binding”

Model Variant

* What are the relative advantages of early binding
versus late binding?

summary

* Attention is closely related to “pooling” operations in convnets
(and other architectures)

 Bahdanau's attention model seems to only cares about
‘content”

 No obvious bias in favor of diagonals, short jumps, fertility,
etc.

e Some work has begun to add other “structural” biases
(Luong et al., 2015; Cohn et al., 2016), but there are lots more

opportunities

e Attention weights provide interpretation you can look at

accord

sur

la

zone
dconomique
européenne

Q
Y =
—

agreement

on

the

European

Fconomirc

Area

was

signed
in

August
1992

<end>

should
marine

be
noted

that
the

-l

|

convient

de

noter

que

I
environnement
marin

est

le

moimns

connu

de

t
environnement

<end=>

(b)

envirorment

1S
the
least

known
of

envirorments

<end>

A word about gradients

I'd

like

Q

beer

e

Ich mochte ein Bier

Attention history:

I'd

00¢
@

B A A

1

like

Q

beer

e

Attention history:

Ich mochte ein Bier

I'd

00¢
@

B A A

1

&

Ich mochte ein Bier

I'd

Attention and Ilranslation

 Cho’s question: does a translator read and memorize

the input sentence/document and then generate the
output?

 Compressing the entire input sentence into a vector
basically says "memorize the sentence”

« Common sense experience says translators refer
back and forth to the input. (also backed up by eye-
tracking studies)

 Should humans be a model for machines”?

Outline of Lecture

* |Image caption generation with attention

KiIkO
1| |
softmax
h,
L x|

likes

softmax

mm’

softmax

</s>

softmax

Sutskever et al. (2014)

Vinyals et al. (2014) Show and Tell: A Neural Image Caption Generator

lmage Caption Generation

* Can attention help caption modeling?

Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention

Kelvin Xu KELVIN.XU@UMONTREAL.CA
Jimmy Lei Ba JIMMY @PSI.UTORONTO.CA
Ryan Kiros RKIROS@CS. TORONTO.EDU
Kyunghyun Cho KYUNGHYUN.CHO@UMONTREAL.CA
Aaron Courville AARON.COURVILLE@UMONTREAL.CA
Ruslan Salakhutdinov RSALAKHU@CS. TORONTO.EDU
Richard S. Zemel ZEMEL@CS. TORONTO.EDU

Yoshua Bengio FIND-ME@ THE.WEB

Xu et al. (2015, ICML)

Regions in ConvNets

Each point in a “higher” level of a convnet
defines spatially localised feature vectors(/matrices).

Xu et al. calls these “annotation vectors”, a;, ¢ € {1,...,L}

F=|aiazxas . -.

Attention

e Attention "weights” (a;) are computed using
exactly the same technigue as discussed above

Attention

e Attention "weights” (a;) are computed using
exactly the same technigue as discussed above

* Deterministic soft attention (Bahdanau et al., 2014)

c; = Fa; (weighted average)

Attention

e Attention "weights” (a;) are computed using
exactly the same technigue as discussed above

* Deterministic soft attention (Bahdanau et al., 2014)
c; = Fa; (weighted average)

e Stochastic hard attention (Xu et al., 2015)
s; ~ Categorical(a;)

c: = F. g, (sample a column)
« \WWhat are the benefits of this model?

 What are the challenges of learning the
parameters of this model?

| earning Hard Attention

logzp w |z, 5)

| earning Hard Attention

L= —logp(w | x)

logZp plw | x, s)

Zp x)logp(w | x,s) (Jensen’s inequality)

| earning Hard Attention

L= —logp(w | z)

logZp p(w | x, s)

< — Zp(s |) logp(w | x,s) (Jensen’s inequality)

N

p(s | z)log p(w | x, s)

Mcl
NN

| earning Hard Attention

 Sample N sequences of attention decisions from the
model

 The gradient is the probability of the gradient of the
probability of this sequence scaled by the log probability
of generating the target words using that sequence of
attention decisions

e This is equivalent to using the REINFORCE algorithm
(Williams, 1992) using the log probability of the observed
words as a “reward function”. REINFORCE a policy
gradient algorithm used for reinforcement learning.

A(0.98) woman(0.54)

throwing(0.33) frisbee(0.37) in(0.21)

park(0.35)

~ .

A large white birdstanding in a forest.

Attention in Captioning

Add soft attention to image captioning: +2 BLEU

Add hard attention to image captioning: +4 BLEU

summary

Significant performance improvements

* Better performance over vector-based encodings
* Better performance with smaller training data sets
Model interpretability

Better gradient flow

Better capacity (especially obvious for translation)

Questions?

